mgiOrpheusDB

Bolt-on Versioning for Relational Databases



Motivation:

Collaborative data science is ubiquitous

< Many users, many versions of same dataset at various stages of analyses
% Status quo:

> Stored in a file system

> Relationships between versions unknown
% Can we build a versioned data store?

> Support efficient access, retrieval, and modification of versions



Motivation: Starting Points

Git/SVN is inefficient and unsuitable

>

VVYY

Ordered semantics

No data manipulation API

No efficient multi-versioning queries
Poor support for massive files

Relational databases are great!

>
>

Pros: efficient, scalable
However, no support for versions



Our approach

< Leverage existing DBMS to support branched versioning
% PostgreSQL + Versioning commands

PostgreSQL
miOrpheusDB

Get all the benefits of relational databases for free!



Framework

git commands, or
User Interface Layer SQL (versions as rel)
“Versioning” Layer [Parser& } [Layqut_ }
. . Translator Optimizer
(translation/bookkeeping)

Unmodified Postgres Backend _—
(not aware of versions)

MﬁOrpheusDB



User Interface Layer: What is currently supported?

e Typical Workflow 1:
o Checkout a specific version (or multiple versions -- as a merge) as a relation
o Perform updates via SQL commands
o Commit back as a new version

e Typical Workflow 2;

o Checkout a specific version (or versions) as a relation
Export relation as a csv
Perform updates in favorite programming language
Import back as a database relation
Commit back as a new version

O O O O

Edits happen by checking out versions: you don't need to clone the entire
repository (not desirable for large dataset collections)



User Interface Layer: What is currently supported?

Git commands: clone, commit, merge, diff

Export-based commands: dump, load, Is (list contents of a version)

SQL-based commands: SQL on a checked out version, or SQL across one or
more versions directly (mix + match with versioning)



Underlying Storage Model: A High Level View

<+ Data Table + Index Table

rid badgelD age gender salary vid rlist

r1 0001 25 F 6500 v {r1,r2,r3}

r2 0002 30 F 7500 v2 {r1,r2,r3,r4}
r3 0003 28 M 7000 V3 {r3.15)

r4 0004 40 M 9000 VA | {2.r3.r4,6.07)
r5 0005 35 F 6500 V5 {r1,r2,r4,r5)
ré 0001 25 F 7500 Index Table

r7 0006 32 M 7000

Data Table MjorpheUSDB



Underlying Storage Model: A High Level View Q

% Track versioning information in metadata table @ @

vid

v1

v2

v3

v4

v5

num_of_
records

3

4

2

parent

{}
{v1}
{v1}
{v2}

{v2,v3}

children create_time

{r1,r2,r3}
{r1,r2,r3,r4}
{r3,r5}
{r2,r3,r4,r6, r7}

{r1,r2,r4,r5}

Version Metadata Table

commit_time

commit_msg

Version Graph

miOrpheusDB



Supported Commands:

User Workspace

-

dump

N
===

load

N

Backend Storage Layout

/r' badgelD

id
clone A
r2 Q002
commit "
rd Q004
rs Q005
ré 0001
” 7 Q006

\

age

25

30

28

40

35

25

32

Data Table

ge

nder

salary
6500
7500
7000
2000
6500
7500

7000

rlist \

vid
1 {r1,r2,r3}
V2 {r1,r2,r3.rd}
3 {r3,r5}
4 {r2,r3,rd,rg, r7}
v5 {r1,r2,rd,r5}
Index Table

/

merge
diff

Is

sql

MiOrpheusDB



Takeaways
% Current prototype can support general version control of structured datasets
% Lightweight and convenient
> (Can operate on any existing DBMS
% Easytouse
> Similar semantics as Git
> Plus easy access to SQL

Future Plans
% Open-source release in a month
% Improvements
> Partitioning for efficiency improvements
> Complex SQL support for cross-version operations




12



Commands: Usage

*
<

*
<

2

clone -v [version id] -t [table name] -f [file name] -ighore

> Clone version(s) into a table or a file

commit -t [table name] -m [message]

> Commit a modified table with commit message

load -f [file path] -t [table name] -n [new table schema] -ignore
> Load records from file to database a (new or existing) table
dump -t [table name] -f [file path]

> Export a table into a file

W&OrpheusDB



More Commands

< merge

> Merge multiple tables/versions into a new table/version
< diff

> Show changes between tables/versions
¢ s

> Show tuples of a particular table / version
> Show meta information of a particular version
< sql
> Standard SQL commands (SELECT, UPDATE, INSERT ...)

W&OrpheusDB



