
Bolt-on Versioning for Relational Databases

Motivation:
Collaborative data science is ubiquitous

❖ Many users, many versions of same dataset at various stages of analyses
❖ Status quo:

➢ Stored in a file system
➢ Relationships between versions unknown

❖ Can we build a versioned data store?
➢ Support efficient access, retrieval, and modification of versions

Motivation: Starting Points
❖ Git/SVN is inefficient and unsuitable

➢ Ordered semantics
➢ No data manipulation API
➢ No efficient multi-versioning queries
➢ Poor support for massive files

❖ Relational databases are great!
➢ Pros: efficient, scalable
➢ However, no support for versions

Our approach

❖ Leverage existing DBMS to support branched versioning
❖ PostgreSQL + Versioning commands

4
Get all the benefits of relational databases for free!

Framework

“Versioning” Layer
(translation/bookkeeping)

 User Interface Layer

5

Unmodified Postgres Backend
(not aware of versions)

 Parser &
Translator

Layout
Optimizer

 DBMS

git commands, or
SQL (versions as rel)

User Interface Layer: What is currently supported?
● Typical Workflow 1:

○ Checkout a specific version (or multiple versions -- as a merge) as a relation
○ Perform updates via SQL commands
○ Commit back as a new version

● Typical Workflow 2:
○ Checkout a specific version (or versions) as a relation
○ Export relation as a csv
○ Perform updates in favorite programming language
○ Import back as a database relation
○ Commit back as a new version

Edits happen by checking out versions: you don’t need to clone the entire
repository (not desirable for large dataset collections)

6

User Interface Layer: What is currently supported?

Git commands: clone, commit, merge, diff

Export-based commands: dump, load, ls (list contents of a version)

SQL-based commands: SQL on a checked out version, or SQL across one or
more versions directly (mix + match with versioning)

7

Underlying Storage Model: A High Level View

8

❖ Data Table + Index Table
rid badgeID age gender salary

r1 0001 25 F 6500

r2 0002 30 F 7500

r3 0003 28 M 7000

r4 0004 40 M 9000

r5 0005 35 F 6500

r6 0001 25 F 7500

r7 0006 32 M 7000

vid rlist

v1 {r1,r2,r3}

v2 {r1,r2,r3,r4}

v3 {r3,r5}

v4 {r2,r3,r4,r6,r7}

v5 {r1,r2,r4,r5}

Data Table

Index Table

9

v1

v4 v5

v2 v3
Underlying Storage Model: A High Level View

Version Graph
vid num_of_

records
parent children create_time commit_time commit_msg

v1 3 {} {r1,r2,r3}

v2 4 {v1} {r1,r2,r3,r4}

v3 2 {v1} {r3,r5}

v4 5 {v2} {r2,r3,r4,r6, r7}

v5 4 {v2,v3} {r1,r2,r4,r5}

Version Metadata Table

❖ Track versioning information in metadata table

10

clone dump

load
commit

User Workspace Backend Storage Layout

Supported Commands:

merge
diff
ls
sql

11

Takeaways
❖ Current prototype can support general version control of structured datasets
❖ Lightweight and convenient

➢ Can operate on any existing DBMS
❖ Easy to use

➢ Similar semantics as Git
➢ Plus easy access to SQL

Future Plans
❖ Open-source release in a month
❖ Improvements

➢ Partitioning for efficiency improvements
➢ Complex SQL support for cross-version operations

12

Commands: Usage

❖ clone -v [version id] -t [table name] -f [file name] -ignore
➢ Clone version(s) into a table or a file

❖ commit -t [table name] -m [message]
➢ Commit a modified table with commit message

❖ load -f [file path] -t [table name] -n [new table schema] -ignore
➢ Load records from file to database a (new or existing) table

❖ dump -t [table name] -f [file path]
➢ Export a table into a file

13

More Commands

❖ merge
➢ Merge multiple tables/versions into a new table/version

❖ diff
➢ Show changes between tables/versions

❖ ls
➢ Show tuples of a particular table / version
➢ Show meta information of a particular version

❖ sql
➢ Standard SQL commands (SELECT, UPDATE, INSERT …)

14

